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The effect of physical ageing on the relaxation
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Empirical models corresponding to a constitutive equation with fractional derivatives are
proposed for linear viscoelastic polymers. For these models, the relaxation modulus, the
dynamic moduli, the relaxation time spectra, and other material functions can be calculated
as a function of a few parameters that characterise the behaviour of a viscoelastic polymer.
The fractional calculus approach allows us to calculate the relaxation time spectrum H(z)
via the Stieltjes inversion in the linear viscoelastic zone. Polymethylmethacrylate (PMMA) is
chosen as a model amorphous polymer in a temperature range from Ty —90°C to

Ty + 25°C. This polymer is characterised by a non-equilibrium state between at least the

B and « relaxations. The structural recovery of PMMA has been investigated using dynamic
mechanical thermal analysis (DMTA) by varying the preparational history. The effect of
time and temperature on the model parameters and on the relaxation time spectra are also
investigated in the neighbourhood of the glass transition. © 7999 Kluwer Academic
Publishers

1. Introduction Equations 1-3 denote the solid generalised Maxwell
Relaxational phenomena in polymers, e.g. the relaxmodel used as an approximation for the study of vis-
ation of mechanical stresses, of the dielectric polarisacoelastic solids.

tion, of the enthalpy or of the free volume have beenthe Obviously, the determination of the relaxation time
subject of research for many years. The understandingpectrum requires the inversion of such an integral
of the essential processes is still incomplete. Thereequation. This is a degenerate problem, and there are
fore, more and more relaxation models appear in ordeseveral difficulties connected with the solution of these
to complete our knowledge as well as to obtain im-problems [3, 4].

proved methods for their description. The relaxational Several methods have been developed for the cal-
phenomena in polymers reveal the existence of a broaculation of relaxation time spectra from experimental
distribution of relaxation times which can be deter-data [1, 5] in the flow and entanglement behaviour of
mined from experimental data, because the relaxatiopolymers.

time spectrunH (z) of solid polymers is related to ex-  In this paper, we attempt to apply these methods
perimental accessible material functions such as, thbetween the glass and the glass rubber transition re-
storage modulug’(w), the loss modulug”(w), or the  gion of amorphous polymers by choosing poly(methyl
relaxation modulug€(t) by a specific kind of integral methacrylate) PMMA as a model amorphous polymer.
equation [1, 2]: Our model, based on the fractional calculus method,
predicts the viscoelastic behaviour of amorphous poly-

E'(w) = Eo+ /+°° H) w?? dinr (1) mersandallows us to calculate the relaxation spectrum
oo 1 272 H(t). We shall also analyse the effect of physical age-
§ +o0 T ing on the distribution of relaxation times.
+oo Lt/ 2. Fractional calculus
E(t) = E0+/_Oo H(z)e™""dInz 3)  The application of fractional calculus to the theory
of viscoelasticity has been proposed many times and
wherekEy is the relaxed modulus. Bagley and Torvik [6, 7] provide a review of attempts
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prior to 1980. The origin of these efforts dates backwhereo*(i w) ande*(i w) are the Fourier transforms of
to the observation by Nutting [8], as early as 1921 the stress and strain respectively. Factoring and dividing
that relaxation phenomena are often proportional tderms in this operation produces:
time or frequency raised to a fractional power and the
subsequent suggestion by Gemant [9] in 1938 of the . Eo + Eu(iwt)?
use of derivatives of fractional order to model it. Major o'(iw) = 1+ (iwt)?
advances were made in the 1980s, Bagley and Torvik
[6, 7] proposed a general fractional viscoelastic modeln another way we can use the representation proposed
as: by Tschoegl [5] called the relaxan@en order to obtain
M N a more general description of the Cole-Cole behaviour.

o(t) + Z 2 Do (t) = Eoe(t) + Z Enr,?" Dtb”s(t) The relaxanc®) is the ratio of the Laplace transformed

m=1 n=1 stressr to the Laplace transformed deformatioand

(4)  isgivenas:

whereo is the applied stress,is the strain and; (f)

o) (12)

the fractional derivative of orderdefined as [10]: Q= Z: Lo] (13)
t € L[e]
DI(f) = — [E/ fv) y}
t rL—r)[dtJg (t—y) The Laplace transform of FZM Equation 6 yields:
forO<r <1 (5) 3 Eo+ Ey(s71)®
This approach was first applied to the description Qs) = W O<acx<1 (14)

of the rheological behaviour of organic glasses [6],
elastomers [11], polyurethane [12], polyisobutyleneThe same complex modulus of the Equation 12 can be
and a monodisperse polybutadiens [13] and evelerived using the following relation:
viscoelastic dampers [11, 14] or structures [7, 12], and
finally to solid amorphous polymers over a very wide e — Eo + Ey(iwt)?
temperature range [15T§ — 190°C andTy + 25°C). E*iow) = Q8)ls=in = 1+ (on)? (15)
From Equation 4 ifM =N =1;a, =by,=a, with
0<a=<1, andE; = E, we can obtain the equation as- with the Laplace variables i ).
S(?Ciated to the Fractional Zener Model (FZM) [15] The real and imaginary partE( =E +i E”) can be
with one spring-pot: calculated by separating the complex function into real
apa _ apa and imaginary parts. In the preceding papers [15] we
o) + Do) = Boe(®) + BuryDie®)  (6) have studied the different cases of #garameter in the
where E, is the unrelaxed moduluskg the relaxed complex plane, then we have shown that FZM cannot
modulus and; the characteristic material time. be used to model the viscoelastic behaviour of solid
The Laplace transform of the fractional derivative amorphous polymers because the Cole-Cole diagram
operatorD] f (t) can be written as' times the Laplace of FZM is symmetrical independently of the value of

transform of f (t): thea parameter.
From Equation 4 we obtain the equation of FZM
'—[Dtr f(t)] =s'LIF()] () with two spring-pots [15]a and b by considering
wheres is the Laplace variable. This property can bethat O<a<b<1. The relaxance functioQ(s) of this
demonstrated by taking the Laplace transform: model can be written as follows:
+00
= st ~ Eu+ Eo[(s10) ™2 + (5T2)°
L[f(t)] /O f (t)eStdt @) (e = B [ ] (16)

1+ (st0)™@ + (st1)~P
of Equation 5. A similar relationship exists in the _
Fourier transform domain. By taking the Fourier Itis easy to determine the complex modulEyw) as

transform, following:

FLT®)] = fo e ©) E*(i®) = Q(S)ls=iw
of Equation 5, a relationship similar to Equation 7 _ Eu+ Eq[(i wfo)_a-ij(iwfl)_b] 17)
results: 1+ (iwt) @+ (iwty) P

F [Dtr f(t)] = (i) FLF ()] (10) " The real and imaginary parts of the complex modulus

The Fourier transform of the fractional derivative of or- ¢an be calculated from Equation (16) as following:
derr of f(t)is (iw)" timesthe Fourier transform df{(t).

Taking the Fourier transform of the FZM Equation 6, E— E, (Eu — Eo)(1+ By)
yields: (1+ By)2+ B2
L e e e (18)
o*(iw) + 17 (iw)*0*(iw) = Eoe™(iw) . (Ey — Eo)B2
+ Eyri(iw)?e*(iw) (12) (1+ B2+ 822
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where From Equations 9 and 20 we obtain:

_ —-b z —a z o0 N .
B; = D(wt) cos(b 2) + (wt1) COS(a 2) E*(w) = iw/ |:Eo n Z H; .e—t/t.:|e—|wtdt
0 i=1

B, = D(wfl)‘bsin<b%) n (wrl)‘asin(a %) (19) (21b)

D= (E)b.
41

The variation ofE’ andE’ with the model parameters N H(wn)?
has been discussed in a previous paper [15] and the WT
real viscoelastic response of amorphous polymersin the E'(w) =B+ Z 1+ (w1i)? (222)
glass transition region can be predicted by this model
nevertheless a limit of this model has been observed for N H . oo
temperatures lower thafy. E'lw)=) —— (22b)

The fractional calculus approach allows us to calcu- = 1+ (on)
late all the viscoelastic functions and in the following
we will calculate the relaxation spectki(r) and com-  However, it must be noted that the results obtained with
pare this function with experiments for an amorphousthis method depend strongly on the numbleof relax-
polymer solid in the neighbourhood of the glass transi-ation times [4]. In addition, there is no unambiguous
tion temperature. relation between the discrete relaxation timgsthe
contributionH;, and the corresponding continuous re-
laxation time spectruni () [3] Equations 1-3.

Nevertheless, discrete and continuous relaxation

ime spectra may be compared in the way described

y Baumgaertel and Winter [16—18]. A comparison be-
fween some of these procedures is presented by Orbey
and Dealy [19]. In this paper, we will derive an ana-
Hytlcal expression based on the relaxar@és) Equa-
tion 13. Equations 1-3 suggest the use of an inverse
Laplace transform in order to obtak(z). However, it
is very complicated for most of the different relaxation
functions. For this reason, another method—the inverse
Stieltjes transform [5]—has been used. In this way, one
obtains:

E*(w) can be split into its real and imaginary parts:

3. Relaxation time spectrum
Linear viscoelastic models are often presented as spe
tral models. Although direct measurement of the relax-
ation time spectrum is impossible, the main advantag
of this modelling is to ensure consistency with linear
viscoelastic theory and to easily solve the problem o
converting dynamic data from the frequency domain to
the time domain.

The linear viscoelastic theories give the following
description of the functiof(t) [5]:

N N
E(t)=Eo+ Y Hel" =E+Y Lel/" (20) 1 -
° ; ° ;fi HE@ = £ M{QE)ls—qoe]  (23)

whereN is the number of relaxation modes,the re-  Then, we can calculate the relaxation spectrum of FZM
laxation times H; the contribution of each time to the with two spring-pots from Equations16 and 23 as fol-
modulus and); the viscosity associated with each time. lowing:

The distribution should be considered continuous, how-

ever the mathematical treatment of constitutive equa- H(r) — Eu— Eo B, o4
tionz is greatly simplified when a discrete spectrum is ()= (1+ By)? + B2 (24)
used.

Theoretically the characteristic values,(H;) can  Where
be inferred from the behaviour of the material under a £\P
oscillations in the linear viscoelastic domain, either in B, D(— cosar + <—) cosbrm
static or in dynamic experiments, provided that both the 1

periment, where the strain is given b¥(i w) = go€ “t,
the material response can be described by the use of

)
)

strain and the rate of strain are low. In a dynamic ex-
B, = D(

2}
)
QD
]
_|_
N
(sl
~
o
%]
>
O
|

the complex modulu&*(w) which can be rewritten by o
using the Fourier transform of relaxation modufti) D= (T—1> O<a=<b=1
as follows:

. . The plot of the logarithm of the normalised relaxation
E*(0) = ioF[E(t), ic] (21a)  time spectrafor Equation 24 s givenin Fig. 1 for various
values of the parametbrWithb — a=0.1= constant,
FIE(t), iw] is the Fourier transform defined from the spectrum becomes broader with decreasing values
Equation 9. of b.
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Figure 1 Logarithm of the normalised relaxation spectrum for the FZM with two spring-pots versus the normalised time for various zedunetbof
withb — a=0.1:Ab=02;mb=0.4; 0 b=0.6;eb=0.8.

4. Experimental Figs 2 and 3 show respectively the DMTA spectra of
4.1. Material E” and tans versus temperature at 1 Hz of the reference
Samples of PMMA were obtained from ELF, Franceand aged samples for the different times of ageing at
who prepared and characterised it. Its molecular weigh®0°C (Tg — 25°C). This set of plots shows that, on the
is 3. 10° g/mol and its polydispersity index is 2.3. one hand, at temperatures between 2@nd 30C,

the anelastic behaviour of 1 Hz of PMMA is affected by

its thermal history (structural recovery). The values of
4.2. Dynamic mechanical measurements E” for aged samples depend on the time of ageing and
Dynamic mechanical measurements were performethe maximum inE” vs. temperature of aged samples
by using a DMTA MKIII (Rheometric Scientific) op- increases if the time of ageing increases.
erating in double cantilever bending mode. This in- Figs4 and 5 show respectively the variatioredfand
strument provides the real and imaginary parts of theans vs. temperature at 1 Hz for the reference and the
dynamic modulus so called, respectively, the storagaged samples of PMMA at different temperatures for
modulusE’ and the loss modulus”. The internal fric-  an ageing time of 10 hours. This set of plots, show that,
tion or mechanical damping tar=(E”/E’)isalsocal- at temperature between about°8and 120C, the
culated.E”, E’ and tars are displayed as a function of structural recovery occurs. The viscoelastic behaviour
the temperature (under isochronal conditions) or of theof PMMA between the secondaryf4) and the main
frequency (under isothermal conditions). (T,) relaxations is affected by physical ageing. One

Rectangular samples (356 x 2) mm were used. may point out in passing that the value Bf of the
Before the DMTArun, the samples were dried for 1 hoursample aged at 9@ decreases sharply betweerf75
under vacuum at 8GC. They were next kept for 1 hour and 113 C. This behaviour could confirm the existence
at 130°C (Tg + 15°C), always under vacuum, in order of two physical ageing kinetics pointed out by micro-
to erase thermomechanical history and any water effectreep experiments [20, 22, 23] for temperatures higher
These samples are called the reference samples.  and lower than 60C (~ Ty — 55°C) in PMMA case.

The isochronal scans were recorded from 30 to Cole-Cole diagrams of reference and aged samples of
130°C at a heating rate ofC/min and at a frequency PMMA at 1 Hz are displayed in Fig. 6 for different age-
of 1 Hz. ing times at 90C and for different ageing temperatures

Physical ageing of PMMA has been studied byand an ageing time of 10 hours. We note that in the high
DMTA under the same experimental conditions with-temperature zone, the slopes of the Cole-Cole diagrams
out removing the samples. are the same. This behaviour is consistent with the fact

After the first DMTA run of the three reference sam- that physical ageing is not observed in this zone, be-
ples up to 130C (Tg+ 15°C), they were kept at this cause amorphous polymers are considered in thermo-
temperature for 20 min. Without removing the sample,dynamic equilibrium at a temperature well above the
they were then cooled down to their ageing temperaglass transition temperature [21]. The difference be-
tures () of 90, 70 and 50C for times ;) of 10, 20  tween Cole-Cole diagrams begins in the vicinity of the
and 96 hours. Next, the samples were cooled to roont” maximum {T,, ~ 122°C) and they increase for lower
temperature in an ambient atmosphere and the seconedmperatures. Concerning the slopes of Cole-Cole di-
DMTA run were made under the same experimentabgrams in the low temperature zone, these slopes are
conditions. affected by the time of ageing (Fig. 6a) and by the
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Figure 2 Loss modulusE”, versus temperature at 1 Hz for the reference and the aged PMMA samples for different times of,ading 90°C:
(a) The references) PMMA sample; (b) The aged PMMA samplastg = 10 hours;O ta =20 hours;A ta=96 hours).
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Figure 3 Loss factor, tad, versus temperature at 1 Hz for the reference and aged PMMA samples for different times oftagéifig=90°C:
(a) The references) PMMA sample; (b) The aged PMMA samplast; = 10 hours;O ta =20 hours;a ta =96 hours).

temperature of ageing (Fig. 6b). Therefore, as relatetiveen about 30 and 11& ~ T, these deviations may

in our case to the fractional parametarandb, these

be ascribed to the presence ffelaxation and even-

parameters must be affected by the structural recoveryually, another relaxation at about 80 in the case of
PMMA [15, 20, 22, 23]. The parameters of the FZM
with two spring-pots andb for all samples are plotted

or physical ageing.

5. Discussion: model and comparison

with experiment

in Table .

The parametea is connected with the slope in the
glass transition low temperature domain dnid con-
Let us now compare the response of FZM with twonected with the slope in the high temperature domain.
spring-pots Equations 18 and 19 with the experimental In order to show the effect of physical ageing on

curves (Cole-Cole diagrams) at 1 Hz. The comparisorthe viscoelastic behaviour of amorphous polymers, the
between the measured and calculated material fungelaxation time spectrum is usually considered because
tions of FZM with two spring-pots is plotted in Fig. 7 this function can easily be connected with processes on
for the reference sample of PMMA and in Fig. 8 for the a molecular level [24]. The corresponding density func-
aged sample of PMMA at 9CC during 10 hours. Agree- tion of the relaxation time spectrurhl(z)/Ey — Eg) of
ment is excellent except the low temperature zone beFZM with two spring-pots calculated from Equation 24
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TABLE | The parameters of the FZM with two spring-pasandb s plotted in Fig. 9 for the reference and the aged sam-
for reference and aged PMMA samples ples of PMMA. The relaxation time spectrum shows a
maximum atr = t; and the viscoelastic time scale are

PMMA Ref 10h 20h 96 h ! :
apparentin the relaxation spectra, the glassy zone to the
ago 0.33 0.27 0.26 0.25 left of the maximum and the transition zone in which
a7 0-32 8-31 0-28 0-32 (H(r)/Ey — Ep) changes steeply.
Ezg 8'39 0'39 8'79 3'79 The changes observed in the spectra at high time
bro 0.79 0.79 0.79 079 Scales (transition zone) e.g., at a high relaxation time,
bso 0.79 0.79 0.79 0.79 broaden in the aged sample, reflect differences in the
Eu-90 (MP2) 1250 1580 1630 1800 modes of motion within the quenched compared with
EHO (mga) 300 145100 1615 1780 the aged sample. They also reflect the effect of phys-
ES‘ZS EMPZ; gg fg 53500 g&éo ical ageing on the parameter which depends on the
Eo_70 (MPa) 20 20 20 20 slope of the Cole-Cole diagram on the low side of the
Eo_s0 (MPa) 20 20 20 20 glass transition zone. Fig. 10 shows the relaxation time
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Figure 4 Loss modulusE”, versus temperature at 1 Hz for the reference and the aged PMMA samples at different temperatures for an ageing time
ta of 10 hours: (a) The reference®)(PMMA sample; (b) The aged PMMA samplas {, =50°C; O T;=70°C; A T,=90°C).
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model Cole-Cole diagrams. They were obtained from
the angles between the tangent and Bexis. In the
same way, the remaining parameters for the glassy and
transition zonesk, and Eq, were obtained by extend-
ing this tangent onto th&’ axis to lower and higher
temperatures, in the glass transition zone, respectively.

From Figs 9 and 10, we note that the relaxation spec-
trum is affected by the thermal history of PMMA and
depends on the time and the temperature of ageing. The
a parameter relates to the broadening of the relaxation
spectrum around the glass transition zone. At high time
scales, the spectrum is unaffected by the physical age-
ing so theb parameter is usually constant.

Then, this spectrum gives a clear picture on the
molecular mobility of solid amorphous polymers in the
neighbourhood of the glass transition zone, but there is
a limit of the spectrum in the glassy zone belbybe-
cause thes-relaxation and another relaxation at about
60°C.

We have proposed the Extended Fractional Solid
Model [15] (EFSM) to describe the entire viscoelastic
behaviour of solid amorphous polymers in the glassy
region. This model gives predictions of the entire vis-
coelastic behaviour of the amorphous polymers in the
glassy zoneTg — 190°C andTy+ 25°C). Thea, b, c
parameters can be associated with the relaxation time
spectrumH (z) of amorphous solid polymers. We will
dedicate a future paper to the study of the distribution of

FigU“T 6 fThe COJ?fECO'etL:_iagfame forthe feTfefeggf gnd th; af99d PMMArelaxation times over a wide range of temperature and
222E|230)"’r(§)th'e 25: | 'P“,:;’,ag :;n‘:'p;“f’t 10 hdé?s);oet:;e;ge frequency to take into account the effect of physical
hours; A t3 =296 hours). (b) Different temperatures for an ageing time ageing phenomenon on the relaxation spectrum.
ta 0f 10 hours: (a) The reference)(PMMA sample; (b) the aged PMMA
samplesi T;=50°C; O T,=70°C; A T;=90°C). 6. Conclusion
The examples show that the dynamic moduli of an
spectrum H(zr)/E, — Ep) for the other sample studied amorphous polymer (PMMA) can accurately be ap-
(ta=10 hours,T, =50, 70, 90°C). proximated using the rheological models based on frac-
The corresponding parameters used are given itional derivatives. The relaxation time spectrum can be
Table I, theb parameter is unaffected by the structuralderived by the inverse Stieltjes transform (Keeping in
recovery but tha parameter varies from sample to sam-mind that the determination of the relaxation time spec-

ple. Herep anda were obtained from the slopes of the trum requires the solution of anill-posed problem). The
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Figure 7 Comparison in the complex plane between the experimental PMMA Cole-Cole diagram at 1 Hz and the corresponding calculated model
FZM Equation 18® experimental datap model.
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Figure 9 Logarithm of the normalised relaxation spectrum (the density function) versus logarithm of the normalised time for the reference and the
aged PMMA samples for different times of ageiagat T, =90°C: (a) The references) PMMA sample; (b) The aged PMMA samplas t; =10
hours;O ta =20 hours;a t; =96 hours).

effect of physical ageing (structural recovery) on theto be the natural counterpartto our recent understanding
model parameters has been investigated in the neiglof fractal (geometric) structures [24]. Both concepts are
bourhood of the glass transition zone and the distribudrawing on the same inspiration: the principle of exact
tion of relaxation times is affected by both the time andor statistical self-similarity. Fractional calculus models
the temperature of physical ageing. should be regarded as tools to describe the behaviour of
The models proposed in this paper fit very well, in thecomplex systems in the first instance on a mesoscopic
vicinity of the glass rubber transition zone. In contrastor macroscopic level. Giving an answer to the ques-
to their simplicity and their satisfactory fit properties, tion for a general connection between the orders of the
the physical interpretation has been difficult and insuffi-fractional operators and some sort of fractal (similarity)
cientuntil now. This problem can only be solved if phys- dimension requires further investigations.
ical explanations are found for the fractional derivatives In summary, the models discussed in this paper can
occurring in the relaxation equation. be regarded as an interesting generalisation, especially
But fractal time processes governed by fractional dif-for materials showing cooperative phenomena. Conse-
ferential or integral equations, as discussed here, seequently, it should be further developed.
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